Adapting a Multi-Agent Soil Simulation on GPU Journée RGE - Belfort

Guillaume Laville

FEMTO-ST/DISC - Université de Franche-Comté

Feb 2013

- 4 同 ト 4 ヨ ト 4 ヨ ト

Overview

- Multi-agent Systems (MAS)
- Sworm
- MIOR
- GPGPU

4 Future works

3 x 3

Multi-agent Systems (MAS) Sworm

MIOR GPGPU

Multi-Agent Systems

Used to simulate complex models

Natural processes, social behaviours...

... based on entities

- Agents (passive ou active actors)
- Environment (store the global properties of the model)
- Behaviours and interactions (often message-based)

Image: A image: A

Multi-agent Systems (MAS) Sworm

Multi-Agent Systems

Generic platforms for MAS simulation

Repast, Madkit, JADE, Netlogo...

... most of these use traditional CPUs

- Sequential execution
- Shared memory parallelism, using IPC or threads
- Distributed unto multiple host, using native sockets or libraries such as MPI

< 同 × I = >

Multi-agent Systems (MAS) Sworm MIOR

Multi-Agent Systems

Problematic

Could this type of simulation be executed on one or multiple GPU, using generalised rules of mapping, to exploit the inherent parallelism of this new architecture?

Logic

Would allow faster execution and/or better scaling on readily available GPU, available at a low cost for any researcher, as well as usage of a new type of hardware platform emerging on supercomputers?

(日)

Multi-agent Systems (MAS) Sworm MIOR GPGPU

About the Sworm model

Overview

- Simulation of soil evolution
- Written in Java using the Madkit platform
- Developped for the IRD

Soil considered as a multi-scale agent-based simulation

- Macroscopic ones (earth worms)
- Microscopic ones (aerobic bacterias) ⇒ Mior

< ロ > < 同 > < 三 > < 三

Multi-agent Systems (MAS) Sworm MIOR GPGPU

Sworm multi-scale model

FIGURE: Sworm multi-scale representation

 $\ensuremath{\operatorname{Figure:}}$ MIOR representation

イロト イボト イヨト イヨト

э

Multi-agent Systems (MAS) Sworm MIOR GPGPU

Microscopic scale : MIOR simulation

Based on two kind of agents

- Microbial colonies (called MM)
- Carbon deposits (called OM)

Two main evolution processes linked to the MM

- Breathing
- Growth

(日)

Multi-agent Systems (MAS) Sworm MIOR GPGPU

Overview of a graphic card

イロト イボト イヨト イヨト

э

Multi-agent Systems (MAS) Sworm MIOR GPGPU

What is GPGPU?

Principe

Use modern, programmable graphic hardware as a generic execution platform for parallelism.

Two main languages available

- CUDA (NVIDIA)
- OpenCL (AMD, NVIDIA, Intel, Khronos Group)

Multipe Java bridges

- JCUDA (www.jcuda.org)
- JOCL (www.jocl.org) ⇒ Retained solution
- JavaCL, LWJGL, JOCL (jogamp.org)...

< ロ > < 同 > < 三 > < 三 >

Model mapping on OpenCL concepts

Model	OpenCL
Agent properties	C-like Structures
Agent actions	Device-local functions
Simulation step	OpenCL kernel

Four main data structures

- MM array
- OM array
- Topology matrix
- Environment (MiorWorld)

5	typedef struct MM {		
6	float x;		
7	float y;		
8	int car	bone;	
9	int dor	nance;	
10	} MM;		
11			
12	typedef struct OM {		
13	float x;		
14	float y;		
15	int car	bone;	
16	int loc	k;	
17	} 0M;		
18			
19	typedef struct MiorWorld {		
20	int nbM	М;	
21	int nb0	м;	
22	int RA;		
23	float RR;		
24	float GR;		
25	float K;		
26	int wid	th;	
27	int min	Size;	
28	int CO2	;	
29	int loc	k;	
30	<pre>} MiorWorld;</pre>		
31			
32			
33	typedef struct RandomState {		
34	ulong a;		
35	ulong b;		
36	ulong c;		
37	} RandomState;		

Execution of multiples agents at the same time

Topology

Each GPU thread is associated to an (OM, MM) couple.

Carbon distribution

Each GPU thread is associated to an OM agent.

Breathing/growth

Each GPU thread is associated to an MM agent.

FIGURE: Execution decomposition

< ロ > < 同 > < 三 > < 三 >

Data structures optimizations

Topology

- two-dimension low density matrix
- walkthought-optimized matrix

Carbon parts

- parts in global device memory
- parts cached in local memory

FIGURE: Topology representations

< ロ > < 同 > < 三 > < 三 >

Results for one simulation

FIGURE: NVIDIA GeForce 8800GT

FIGURE: NVIDIA Tesla 1070

< □ > < 同 > < 回

Results for a fixed number of simulations

- fixed number of simulations to execute
- varying the number of execution launched in one GPU execution

FIGURE: Execution time of 1000 simulations

Future works

- Synchronize MIOR execution on GPU with the existing Sworm CPU computations.
- Allow the distribution of GPU computations on multiple GPUs across multiple nodes.
- Propose a generic execution model for computing-intensive, environment-wide model evolutions in ABMs.

伺 ト イヨト イヨト

Future works

- Synchronize MIOR execution on GPU with the existing Sworm CPU computations.
- Allow the distribution of GPU computations on multiple GPUs across multiple nodes.
- Propose a generic execution model for computing-intensive, environment-wide model evolutions in ABMs.

伺 ト イヨト イヨト

Future works

Generic GPU execution platform

- Provide generic implementations of common MAS algorithm (diffusion, computation of distances in 2d and 3d, matrices reduction...)
- Modular : Each set of functions regrouped in modules
- Extensible : Possibility to add modules to treat new problems.

伺 ト イヨト イヨ

• Questions?

< ロ > < 回 > < 回 > < 回 > < 回 >

19/19

æ