
Fast Scalar Multiplication on   Elliptic 
Curves fo Sensor  Nodes

Youssou  FAYE 
Hervé GUYENNET

Yanbo SHOU
Université de Franche-Comté

                                  Réseaux Grand Est                                    

Besançon le 24 octobre 2013



❶ Introduction
• Wireless Sensor Networks (WSNs)
• Security Challenge
• Discrete Logarithm

❷ Elliptic Curve Cryptography
• ECC Introduction
• Scalar Multiplication
• Fast Scalar Multiplication Methods

❸ Fast Scalar Multiplication on ECC For Sensor Nodes 
• Presentation
• Analytical Evaluation
• Efficiency Analysis
• Performance Evaluation

❹ Conclusion and Perspectives

TABLE OF CONTENTS

INTRODUCTION
ELLIPTIC CURVE CRYPTOGRAPHY (ECC)

FAST SCALAR MULTIPLICATION FOR   SENSOR NODES  
CONCLUSION

1/21
Y. FAYE



• Limited Computation Power  (Microcontroller)

• Sensor

• Low Power Transmission

• Limited Memory (RAM, ROM)

• Low  Energy  (batteries)

• Example: Telosb
• Processor MSP430 8MHz

•RAM 10 Ko, ROM 48Ko

•802.15.4/ZigBee RF 2.4 to 2.4835GHz

•Two AA batteries
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• Large Number of Sensor Nodes
• Wireless Communication
• Applications: Data Collection, Monitoring

• Example of Applications:

t°

Time-driven Application Event-driven Application
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• Minimization of:
• Communication

• Memory Storage

• Computation

• Approaches

•  Symmetric key cryptography

• Public-key cryptography  feasible with ECC for sensor 
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•  Integer Factorisation: N=pq ( p, q, 2 primes) 

• RSA (1977)

• Key Generation, Encrytion/Decryption, Signature

• Discrete Logarithm: y=gx  (y,g 2, integers)

• Key Generation (Diffie-Hellman 1976),

• Encrytion/Decryption (ElGamal 1984),

• Signature (DSA  1991 (NIST*))

•  Elliptic Curve Discrete Logarithm: Q=dP (Q,P, 2points)

• Key Generation (Diffie-Hellman),

• Encrytion/Decryption (ElGamal), 

• Signature (ECDSA 1992 Scott Vanstone NIST*)
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•  Elliptic Curves: 1980 by Miller and Koblitz

• Fast Computation

• Short Key

• Same Security Level than RSA

• ECC vs RSA

Security level Signature Key Generation

RSA (IF) 1024bits 315,9ms 319,4ms

ECC(EDL) 160bits 67,91ms 44,6ms
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y2=x3-4x

•Defined in finit field Fq;
•q= pm, with p prime;
•If m=1, p≠ 2 ou 3, Fq is a prime field;
•If q=2m, Fq is a binary field

Weierstrass Equation: cryptography

E: y2 = x3+ax+b

General Weierstrass Equation

E: y2=a1xy+a3y=x3+a2x2+a4x+a6
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•  ECC on finit prime field Fp

• E: y2 = x3+ax+b(mod p), avec ∆=4a3+27b2≠ 0

• Abelian group (E(Fp), +)

• (E(Fp), +)={(x,y)∈ Fp x Fp: y2 = x3+ax+b(mod p)}∪{∞}

• Addition: P1+P2= P3, P3 ∈ E(Fp)

• Identity: {∞}, P+ ∞= P

• Inverse: P+(-P)= ∞
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• ECC Arithmetic Level

•kP, with k an integer number
•kP=P+P+................+P

Points Arithmetic

Scalar Arithmetic

Finit Field Arithmetic

P1(x1, y1)

P2(x2, y2)

P1 +P2(x3, y3)

P(x, y)

2P(x3, y3)

Addition Doubling

•Addition
•x3=λ2-x1-x2,       y3=λ(x1-x3)-y1

•λ= (y2-y1)/(x2-x1)

•Doubling (Tripling, quadrupling etc...)

•x3=λ2-2x1,       y3=λ(x1-x3)-y1

•λ= 3x1
2+a/2y1

k

•Addition/subtraction, multiplication, 
squaring inversion in FP (on 
coordonates)
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•Q=kP, k  large integer( minimum 160bits)

•The dominant Operation in ECC

•Key Generation

•Encryption / Decryption

•Costly Operation, for Embedded Devices
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Classic Binary Algorithm is the 
Widely Used Techniques 

Example:Double-and-Add

Input  k= (kl-1,  kl-2, ......., k1, k0)2, 

           P ∈ E(FP)
Output  kP
Begin
   Q←∞;
  For i from 0 to l-1 do
       IF ki=1  Then
          Q←Q+ P;
        EndIF
        P←2P;
   EndFor
      Return (Q); 
 End

•Double-and-Add Algorithm
•Non-Adjacent Form (NAF, wNAF)
•Slinding Windows Method
•etc..
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Based on Point Order and Point Inverse

Presentation
Analytical Evaluation
Efficiency Analysis
Performance Evaluation

INTRODUCTION
ELLIPTIC CURVE CRYPTOGRAPHY (ECC)

FAST SCALAR MULTIPLICATION FOR   SENSOR NODES  
CONCLUSION

Presentation (1)

12/21
Y. FAYE

 


































 





















































































































































•P Generator Point with Order n 
(order  of P= #P=n)
•⎣⎦= Integer part function

1)If  k > n, kP = dP  where  d=(k−Ⅼk/2⅃.n)

2)If k ∈ ]Ⅼn/2⅃, n-1], kP=dP where d=(k−n)

3)If k ∈ ]0, Ⅼn/2⅃], kP = dP where d = k

4)If k=n or -n, kP = ∞
5)If k∈]-(n-1), -Ⅼn/2⅃[,kP=dP where d=(n+k)

6)If k ∈ ]-Ⅼn/2⅃, 0[, kP = dP where d = k,

7)If  k < -n, kP = dP  where  d=k+n.Ⅼ|k|/2⅃

       

Example: #P(0,1)=28 
E(F23): y2 = x3+x+1 
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•P  Point with Order n (#P=n)

•2) If k ∈ ]Ⅼn/2⅃, n-1], kP=dP where d=(k−n)

•3) If k ∈ ]0, Ⅼn/2⅃], kP = dP where d = k
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Example: E(F23): y2 = x3+x+1 

• P(0,1) Generator point, with #P=28

•26P(6,4)  <=>  2P(6,-4)

•27P(0,-1)  <=>  P(0,1)  (almost free)
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(1)

Where

(2)

Replaced                  by

(3)

(4) Speed-up =
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‣Speed-up for all k=

Speed-up for a given k=2(k-(n/2))
Example: 22P=6P=>2(22-(28/2))=16P

Because 6P+16P=22P

‣Determined by the length bit of k

•log2(k) if k=2x , x integer

•Or Ⅼlog2(k)⅃+1 
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Fig. 3. Sum Of all k values function of order n in [Ⅼn/2⅃+1, n-1]

Fig. 4. Average Of all k values function of order n in [Ⅼn/2⅃+1, n-1]
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•If log2 (n)=x, with x integer, speed-up  in [L n/2⅃+1, n-1]

•If log2 (n)=x, with x not integer, speed-up in 

•If k=n-1, is the maximum  speed-up is log2(n-1)

Table 1. Speed-up S for some values of k for x integer

Table 1. Speed-up S for some values of k for x not integer
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Fig. 5. Speed-up rate between even and odd order in [Ⅼn/2⅃+1, n-1]

If the order n >2 is an even number:

If the order n ≥3 is an odd number:
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•Using NIST-192 recommended parameters

•Java simulateur on an Intel Core i5-2520 processor, taking 
into account the computing power difference between this 
processor and a MSP 430 MCU 

Fig.6. Running times (ms) using affine coordinates Fig.7. Running times (ms) using Jacobian coordinates

Presentation
Analytical Evaluation
Efficiency Analysis
Performance Evaluation

INTRODUCTION
ELLIPTIC CURVE CRYPTOGRAPHY (ECC)

FAST SCALAR MULTIPLICATION FOR   SENSOR NODES  
CONCLUSION

Performance Evaluation 

Y. FAYE



Conclusion

• The proposed  mechanism significantly the 
computation time in the interval [L n/2⅃+1, n-1 ]. 

• We show that the usage of even order is more 
efficient than odd order.

•  It can be easily applied to almost all existing fast 
scalar multiplication methods

Perspectives

•  Experimenting our current technique on real sensor 
nodes with elliptic curves over finite prime fields.
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Thank You For Your Attention

Questions?
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