

Coverage and Lifetime Optimization in Heterogeneous Energy Wireless Sensor Networks

A. K. Idrees, K. Deschinkel, M. Salomon and R. Couturier

FEMTO-ST - DISC Department - AND Team - IUT de Belfort-Montbeliard

October 24th, 2013

Outline

1. INTRODUCTION

2. COVERAGE PROBLEM IN WSNs

3. LITERATURE REVIEW

4. PROPOSED COVERAGE PROTOCOL

5. PERFORMANCE EVALUATION

6. CONCLUSION AND FUTURE WORKS

INTRODUCTION :WIRELESS SENSOR NETWORKS(WSNs)

DEVELOPMENT OF TECHNOLOGY

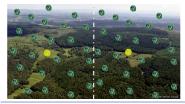
- Embedded micro-sensing MEMS.
- Wireless communications.

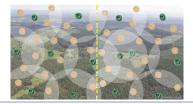
Sensor

- Electronic Low-cost tiny device.
- Sense, process and transmit data.
- Limited energy, memory and processing capabilities.

SOME APPLICATIONS OF WSNs

COVERAGE PROBLEM IN WSNs : PROBLEM DEFINITION


MAIN QUESTION?


How to reduce the redundancy while coverage preservation for prolong the network lifetime continuously and effectively when monitoring a certain area (or region) of interest ?

OUR SOLUTION

The area of interest is first divided into subregions using a divide-and conquer method and then combine two efficient techniques :

- Leader Election for each subregion.
- Activity Scheduling based optimization is planned for each subregion.

LITERATURE REVIEW :COVERAGE PROTOCOLS IN WSNs

Characteristics

		Oisti	puted cent	railed Are	a CONSTRACT		Ne Ver	togeneoi	ogene jein	noos kon	Disjointe	ANOT IN COURSE
slo	D. Tian and N. D. Georganas(2002)	1		1				1				1
otoo	S. K. Prasad and A. Dhawan (2007)	1			1			1		1		
ed P	C. T. Vu (2007)	1		1		1	1	1		1		1
sodo	Z. Abrams et. al. (2004)	1	1	1		1		1				
Some Proposed Protocols	M. Cardei et.al.(2002)		1	1				1	1		1	
	Cardei et al. (2005)		1		1			1	1		1	
	Our Protocol (2013)	1		1			1	1		1		1

LITERATURE REVIEW :OUR CONTRIBUTION

QUESTION 1

How must the phases for information exchange, decision and sensing be planned over time ?

• The time line is divided into rounds. Each round contains 4 phases : Information Exchange, Leader Election, Decision, and Sensing.

QUESTION 2

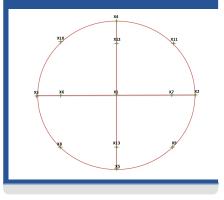
What are the rules to decide which node has to be turned on or off?

• Limit the Overcoverage and Prevent the Undercoverage.

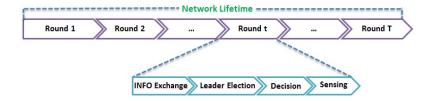
QUESTION 3

Which node should make such a decision?

• The decision is made by a leader in each subregion.


6/20

PROTOCOL ASSUMPTION


Static Wireless Sensors are :

- Randomly and uniformly deployed
- Deployed in high density.
- Homogeneous in terms of :
 - Sensing,Communication and
 - Processing capabilities
- Heterogeneous Energy.
- Its $R_C \geq 2R_S$.
- Know Its location by :
 - Embedded GPS or
 - Location Discovery Algorithm.
- Time synchronized.

DISK SENSOR COVERAGE MODEL

Information Exchange Phase

The Information Exchanged :

- Sensor ID,
- Remaining energy,
- Sensor Position.

Leader Election Phase

The selection criteria priority :

- Larger number of neighbours,
- Larger remaining energy,
- Larger index.

Decision Phase

The Leader will solve an integer program(see next slide) to :

- Select which sensors will be activated in the sensing phase.
- Send Active-Sleep packet to each sensor in the subregion.

Sensing Phase

Based on Active-Sleep Packet Information :

- Active sensors will execute their sensing task.
- Sleep sensors will wait a time equal to the period of sensing to wakeup.

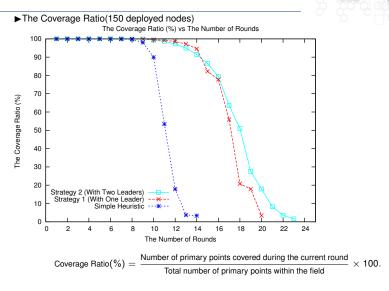
The integer program solves a coverage optimization problem at each round according to following formulation :

$$\left\{ \begin{array}{ll} \min \sum_{p \in P} (w_{\theta} \Theta_{p} + w_{U} U_{p}) \\ \text{subject to:} \\ \sum_{j \in J} \alpha_{jp} X_{j} - \Theta_{p} + U_{p} = 1, \quad \forall p \in P \\ \Theta_{p} \in \mathbb{N}, \qquad \qquad \forall p \in P \\ U_{p} \in \{0, 1\}, \qquad \qquad \forall p \in P \\ X_{j} \in \{0, 1\}, \qquad \qquad \forall j \in J \end{array} \right.$$

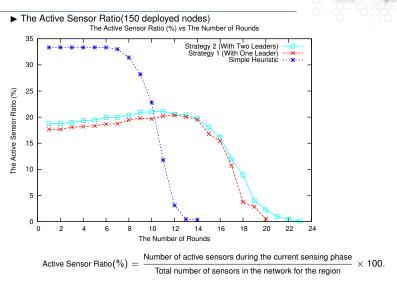
- X_j : indicates whether or not the sensor j is actively sensing in the round (1 if yes and 0 if not);
- Θ_p : *overcoverage*, the number of sensors minus one that are covering the primary point *p*;
- *U_p* : *undercoverage*, indicates whether or not the primary point *p* is being covered (1 if not covered and 0 if covered).

Simulation Parameter

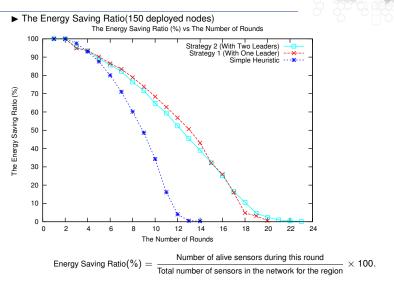
- The simulations were conducted using OMNeT++ simulator.
- Experimental results were obtained from randomly generated networks and for five different densities : 50,100, 150, 200 and 250 nodes.
- The nodes are deployed over a (50 imes 25) m^2 sensing field.
- The results are the average of 10 simulations.
- A simulation ends when :
 - All the nodes are dead, or
 - The sensor network becomes disconnected

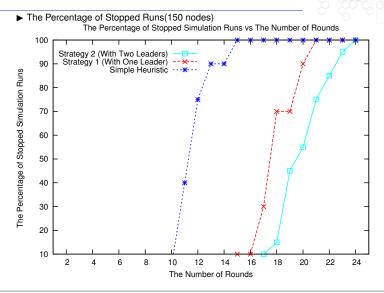

Performance Metrics :

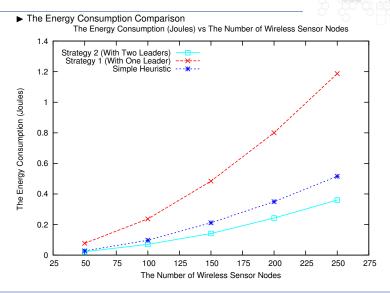
 Coverage ratio, Number of active nodes ratio, Energy saving ratio, Energy consumption, Number of stopped runs, Execution time, and Network lifetime.


Performance Comparison :

- Strategy 2 (Our approach distributed on several subregions).
- Strategy 1 (Our approach applied on all the region).
- Simple heuristic(without optimization).







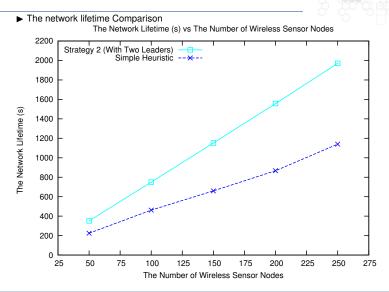


TABLE: The execution time(s) vs the number of sensors

Sensors number	Strategy 2	Strategy 1	Simple heuristic		
	(with two leaders)	(with one leader)			
50	0.097	0.189	0.001		
100	0.419	1.972	0.0032		
150	1.295	13.098	0.0032		
200	4.54	169.469	0.0046		
250	12.252	1581.163	0.0056		

CONCLUSION AND FUTURE WORKS

CONCLUSION

- A distributed multi-rounds coverage protocol to optimize coverage and lifetime is proposed.
- Our Protocol maintain the coverage for a larger number of rounds with less active nodes allow to save energy efficiently and prolong the network lifetime.
- Our protocol is more powerful against network disconnections and less energy consumption during communication .It performs the optimization with suitable execution times.

FUTURE WORKS

- Currently, we are applying the fully distributed approach that proposed by C. T. Vu (2007) to compare it with our approach.
- We plan to study and propose a coverage and lifetime optimization protocol which computes all active sensor schedules in one time.

THANK YOU FOR YOUR ATTENTION

QUESTIONS AND COMMENTS

University of Franche-Comté 20 / 20