
Simulation for Experimenting HPC Systems

Martin Quinson (Nancy University, France)
et Al.

Nancy, June 3 2010

Scientific Computation Applications

G
eo

rg
es

S
m

o
o

t
P

h
ys

ic
s

N
o

b
el

P
ri

ce
1

9
9

6
L

ar
g

e
H

ar
d

ro
n

C
o

ll
id

er

Classical Approaches in science and engineering

1. Theoretical work: equations on a board

2. Experimental study on an scientific instrument

That’s not always desirable (or even possible)

I Some phenomenons are intractable theoretically

I Experiments too expensive, difficult, slow, dangerous

The third scientific way: Computational Science

3. Study in silico using computers
Modeling / Simulation of the phenomenon or data-mining

; High Performance Computing Systems

These systems deserve very advanced analysis

I Their debugging and tuning are technically difficult

I Their use induce high methodological challenges

I Science of the in silico science

Martin Quinson Simulation for Experimenting HPC Systems Introduction and Context 2/31

Scientific Computation Applications

G
eo

rg
es

S
m

o
o

t
P

h
ys

ic
s

N
o

b
el

P
ri

ce
1

9
9

6
L

ar
g

e
H

ar
d

ro
n

C
o

ll
id

er

Classical Approaches in science and engineering

1. Theoretical work: equations on a board

2. Experimental study on an scientific instrument

That’s not always desirable (or even possible)

I Some phenomenons are intractable theoretically

I Experiments too expensive, difficult, slow, dangerous

The third scientific way: Computational Science

3. Study in silico using computers
Modeling / Simulation of the phenomenon or data-mining

; High Performance Computing Systems

These systems deserve very advanced analysis

I Their debugging and tuning are technically difficult

I Their use induce high methodological challenges

I Science of the in silico science

Martin Quinson Simulation for Experimenting HPC Systems Introduction and Context 2/31

Studying Large Distributed HPC Systems (Grids)

Why? Compare aspects of the possible designs/algorithms/applications
I Response time

I Throughput

I Scalability

I Robustness

I Fault-tolerance

I Fairness

How? Several methodological approaches

I Theoretical approch: mathematical study [of algorithms]
, Better understanding, impossibility theorems; / Everything NP-hard

I Experimentations (≈ in vivo): Real applications on Real platforms
, Believable; / Hard and long. Experimental control? Reproducibility?

I Emulation (≈ in vitro): Real applications on Synthetic platforms
, Better experimental control; / Even more difficult

I Simulation (in silico): Prototype of applications on model of systems
, Simple; / Experimental bias

⇒ No approach is enough, all are mandatory

Martin Quinson Simulation for Experimenting HPC Systems Introduction and Context 3/31

Outline

Introduction and Context
High Performance Computing for Science
In vivo approach (direct experimentation)
In vitro approach (emulation)
In silico approach (simulation)

The SimGrid Project
User Interface(s)
SimGrid Models
SimGrid Evaluation

Grid Simulation and Open Science
Recapping Objectives
SimGrid and Open Science
HPC experiments and Open Science

Conclusions

Martin Quinson Simulation for Experimenting HPC Systems Introduction and Context 4/31

In vivo approach to HPC experiments (direct experiment)

I Principle: Real applications, controlled environment
I Challenges: Hard and long. Experimental control? Reproducibility?

Grid’5000 project: a scientific instrument for the HPC
I Instrument for research in computer science (deploy your own OS)
I 9 sites, 1500 nodes (3000 cpus, 4000 cores); dedicated 10Gb links

Luxembourg

Brésil

Other existing platforms

I PlanetLab: No experimental control ⇒ no reproducibility
I Production Platforms (EGEE): must use provided middleware
I FutureGrid: future American experimental platform inspired from Grid’5000

Martin Quinson Simulation for Experimenting HPC Systems Introduction and Context 5/31

In vitro approach to HPC experiments (emulation)

I Principle: Injecting load on real systems for the experimental control
≈ Slow platform down to put it in wanted experimental conditions

I Challenges: Get realistic results, tool stack complex to deploy and use

Wrekavoc: applicative emulator

I Emulates CPU and network

I Homogeneous or Heterogeneous platforms

machine physique 4

machine physique 2machine physique 1

machine physique 3

Virtualisation sur les noeuds

Réseau émulé

Other existing tools

I Network emulation: ModelNet, DummyNet, . . .
Tools rather mature, but limited to network

I Applicative emulation: MicroGrid, eWan, Emulab
Rarely (never?) used outside the lab where they were created

Martin Quinson Simulation for Experimenting HPC Systems Introduction and Context 6/31

In silico approach to HPC experiments (simulation)

I Principle: Prototypes of applications, models of platforms
I Challenges: Get realistic results (experimental bias)

SimGrid: generic simulation framework for distributed applications

I Scalable (time and memory), modular, portable. +70 publications.

I Collaboration Loria / Inria Rhône-Alpes / CCIN2P3 / U. Hawaii

G
R
E
:

G
R

A
S

 in
 s

itu

SMURF
SimIX network proxy

SimIX

SURF
virtual platform simulator

XBT

SimDag
SMPI

MSG
GRAS

”POSIX-like” API on a virtual platform

1

32

45 6

6

3

2

1

4

5

1

3 4 5

6

2

Root

End

Time

Time

 0.001

 0.01

 0.1

 1

 10

 100

 1000

 10000

 100000

 10

 20

 40

 80

 160

 320

 640

 1280
 2560
 5120
 10240

ex
ec

u
ti

o
n

 t
im

e
(s

)

number of simulated hosts

Default CPU Model
Partial LMM Invalidation

Lazy Action Management
Trace Integration

Other existing tools

I Large amount of existing simulator for distributed platforms:
GridSim, ChicSim, GES; P2PSim, PlanetSim, PeerSim; ns-2, GTNetS.

I Few are really usable: Diffusion, Software Quality Assurance, Long-term availability

I No other study the validity, the induced experimental bias

Martin Quinson Simulation for Experimenting HPC Systems Introduction and Context 7/31

Outline

Introduction and Context
High Performance Computing for Science
In vivo approach (direct experimentation)
In vitro approach (emulation)
In silico approach (simulation)

The SimGrid Project
User Interface(s)
SimGrid Models
SimGrid Evaluation

Grid Simulation and Open Science
Recapping Objectives
SimGrid and Open Science
HPC experiments and Open Science

Conclusions

Martin Quinson Simulation for Experimenting HPC Systems The SimGrid Project 8/31

User-visible SimGrid Components

GRAS
Framework
to develop

distributed applications

MSG

Simple application-

level simulator

SimDag

Framework for

DAGs of parallel tasks

XBT: Grounding features (logging, etc.), usual data structures (lists, sets, etc.) and portability layer

toolbox

AMOK

applications on top of

a virtual environment

Library to run MPI
SMPI

SimGrid user APIs
I SimDag: specify heuristics as DAG of (parallel) tasks
I MSG: specify heuristics as Concurrent Sequential Processes

(Java/Ruby/Lua bindings available)
I GRAS: develop real applications, studied and debugged in simulator
I SMPI: simulate MPI codes

Which API should I choose?
I Your application is a DAG ; SimDag
I You have a MPI code ; SMPI
I You study concurrent processes, or distributed applications

I You need graphs about several heuristics for a paper ; MSG
I You develop a real application (or want experiments on real platform) ; GRAS

I Most popular API (for now): MSG

Martin Quinson Simulation for Experimenting HPC Systems The SimGrid Project 9/31

User-visible SimGrid Components

GRAS
Framework
to develop

distributed applications

MSG

Simple application-

level simulator

SimDag

Framework for

DAGs of parallel tasks

XBT: Grounding features (logging, etc.), usual data structures (lists, sets, etc.) and portability layer

toolbox

AMOK

applications on top of

a virtual environment

Library to run MPI
SMPI

SimGrid user APIs
I SimDag: specify heuristics as DAG of (parallel) tasks
I MSG: specify heuristics as Concurrent Sequential Processes

(Java/Ruby/Lua bindings available)
I GRAS: develop real applications, studied and debugged in simulator
I SMPI: simulate MPI codes

Which API should I choose?
I Your application is a DAG ; SimDag
I You have a MPI code ; SMPI
I You study concurrent processes, or distributed applications

I You need graphs about several heuristics for a paper ; MSG
I You develop a real application (or want experiments on real platform) ; GRAS

I Most popular API (for now): MSG

Martin Quinson Simulation for Experimenting HPC Systems The SimGrid Project 9/31

MSG: Heuristics for Concurrent Sequential Processes

(historical) Motivation

I Centralized scheduling does not scale

I SimDag (and its predecessor) not adapted to study decentralized heuristics

I MSG not strictly limited to scheduling, but particularly convenient for it

Main MSG abstractions
I Agent: some code, some private data, running on a given host

set of functions + XML deployment file for arguments

I Task: amount of work to do and of data to exchange

I MSG task create(name, compute duration, message size, void *data)
I Communication: MSG task {put,get}, MSG task Iprobe
I Execution: MSG task execute

MSG process sleep, MSG process {suspend,resume}

I Host: location on which agents execute

I Mailbox: similar to MPI tags

Martin Quinson Simulation for Experimenting HPC Systems The SimGrid Project 10/31

MSG: Heuristics for Concurrent Sequential Processes

(historical) Motivation

I Centralized scheduling does not scale

I SimDag (and its predecessor) not adapted to study decentralized heuristics

I MSG not strictly limited to scheduling, but particularly convenient for it

Main MSG abstractions
I Agent: some code, some private data, running on a given host

set of functions + XML deployment file for arguments

I Task: amount of work to do and of data to exchange
I MSG task create(name, compute duration, message size, void *data)
I Communication: MSG task {put,get}, MSG task Iprobe
I Execution: MSG task execute

MSG process sleep, MSG process {suspend,resume}
I Host: location on which agents execute

I Mailbox: similar to MPI tags

Martin Quinson Simulation for Experimenting HPC Systems The SimGrid Project 10/31

SIMGRID Usage Workflow: the MSG example (1/2)

1. Write the Code of your Agents

int master(int argc, char **argv) {
for (i = 0; i < number_of_tasks; i++) {
t=MSG_task_create(name,comp_size,comm_size,data);
sprintf(mailbox,"worker-%d",i % workers_count);
MSG_task_send(t, mailbox);

}

int worker(int ,char**){
sprintf(my_mailbox,"worker-%d",my_id);
while(1) {

MSG_task_receive(&task, my_mailbox);
MSG_task_execute(task);
MSG_task_destroy(task);

}

2. Describe your Experiment

XML Platform File
<?xml version=’1.0’?>
<!DOCTYPE platform SYSTEM "surfxml.dtd">
<platform version="2">
<host name="host1" power="1E8"/>
<host name="host2" power="1E8"/>
...
<link name="link1" bandwidth="1E6"

latency="1E-2" />
...
<route src="host1" dst="host2">

<link:ctn id="link1"/>
</route>
</platform>

XML Deployment File

<?xml version=’1.0’?>
<!DOCTYPE platform SYSTEM "surfxml.dtd">
<platform version="2">
<!-- The master process -->
<process host="host1" function="master">
<argument value="10"/><!--argv[1]:#tasks-->
<argument value="1"/><!--argv[2]:#workers-->

</process>

<!-- The workers -->
<process host="host2" function="worker">

<argument value="0"/></process>
</platform>

Martin Quinson Simulation for Experimenting HPC Systems The SimGrid Project 11/31

SIMGRID Usage Workflow: the MSG example (2/2)

3. Glue things together

int main(int argc, char *argv[]) {
/* Bind agents’ name to their function */
MSG_function_register("master", &master);
MSG_function_register("worker", &worker);

MSG_create_environment("my_platform.xml"); /* Load a platform instance */
MSG_launch_application("my_deployment.xml"); /* Load a deployment file */

MSG_main(); /* Launch the simulation */

INFO1("Simulation took %g seconds",MSG_get_clock());
}

4. Compile your code (linked against -lsimgrid), run it and enjoy

Executive summary, but representative
I Similar in others interfaces, but:

I glue is generated by a script in GRAS and automatic in Java with introspection
I in SimDag, no deployment file since no CSP

I Platform can contain trace informations, Higher level tags and Arbitrary data
I In MSG, applicative workload can also be externalized to a trace file

Martin Quinson Simulation for Experimenting HPC Systems The SimGrid Project 12/31

The MSG master/workers example: colorized output

$./my_simulator | MSG_visualization/colorize.pl
[0.000][Tremblay:master] Got 3 workers and 6 tasks to process
[0.000][Tremblay:master] Sending ’Task_0’ to ’worker-0’
[0.148][Tremblay:master] Sending ’Task_1’ to ’worker-1’
[0.148][Jupiter:worker] Processing ’Task_0’
[0.347][Tremblay:master] Sending ’Task_2’ to ’worker-2’
[0.347][Fafard:worker] Processing ’Task_1’
[0.476][Tremblay:master] Sending ’Task_3’ to ’worker-0’
[0.476][Ginette:worker] Processing ’Task_2’
[0.803][Jupiter:worker] ’Task_0’ done
[0.951][Tremblay:master] Sending ’Task_4’ to ’worker-1’
[0.951][Jupiter:worker] Processing ’Task_3’
[1.003][Fafard:worker] ’Task_1’ done
[1.202][Tremblay:master] Sending ’Task_5’ to ’worker-2’
[1.202][Fafard:worker] Processing ’Task_4’
[1.507][Ginette:worker] ’Task_2’ done
[1.606][Jupiter:worker] ’Task_3’ done
[1.635][Tremblay:master] All tasks dispatched. Let’s stop workers.
[1.635][Ginette:worker] Processing ’Task_5’
[1.637][Jupiter:worker] I’m done. See you!
[1.857][Fafard:worker] ’Task_4’ done
[1.859][Fafard:worker] I’m done. See you!
[2.666][Ginette:worker] ’Task_5’ done
[2.668][Tremblay:master] Goodbye now!
[2.668][Ginette:worker] I’m done. See you!
[2.668][] Simulation time 2.66766

Martin Quinson Simulation for Experimenting HPC Systems The SimGrid Project 13/31

SimGrid in a Nutshell

logs

stats

visu

Availibility

Changes

Platform

Topology

Application

Deployment

Simulation Kernel

Application

Simulator

OutcomesScenario

Applicative
Workload

Parameters

Input

SimGrid is no simulator, but a simulation framework

Martin Quinson Simulation for Experimenting HPC Systems The SimGrid Project 14/31

Outline

Introduction and Context
High Performance Computing for Science
In vivo approach (direct experimentation)
In vitro approach (emulation)
In silico approach (simulation)

The SimGrid Project
User Interface(s)
SimGrid Models
SimGrid Evaluation

Grid Simulation and Open Science
Recapping Objectives
SimGrid and Open Science
HPC experiments and Open Science

Conclusions

Martin Quinson Simulation for Experimenting HPC Systems The SimGrid Project 15/31

Under the Hood: Simulation Models

Modeling CPU
I Resource delivers pow flop / sec; task require size flop ⇒ lasts size

pow sec
I Simple (simplistic?) but more accurate become quickly intractable

Modeling Single-Hop Networks
I Simplistic: T = λ+ size

β ; Better: use β′ = min(β, Wmax

RTT) (TCP windowing)

Modeling Multi-Hop Networks
I Simplistic Models: Store & Forward or Wormhole

S

l1

l3

l2 pi ,j

MTU

S

l1

l3

l2

, Easy to implement; / Not realistic (TCP Congestion omitted)

I NS2 and other packet-level study the path of each and every network packet
, Realism commonly accepted; / Sloooooow

Martin Quinson Simulation for Experimenting HPC Systems The SimGrid Project 16/31

Under the Hood: Simulation Models

Modeling CPU
I Resource delivers pow flop / sec; task require size flop ⇒ lasts size

pow sec
I Simple (simplistic?) but more accurate become quickly intractable

Modeling Single-Hop Networks
I Simplistic: T = λ+ size

β ; Better: use β′ = min(β, Wmax

RTT) (TCP windowing)

Modeling Multi-Hop Networks
I Simplistic Models: Store & Forward or Wormhole

S

l1

l3

l2 pi ,j

MTU

S

l1

l3

l2

, Easy to implement; / Not realistic (TCP Congestion omitted)

I NS2 and other packet-level study the path of each and every network packet
, Realism commonly accepted; / Sloooooow

Martin Quinson Simulation for Experimenting HPC Systems The SimGrid Project 16/31

Under the Hood: Simulation Models

Modeling CPU
I Resource delivers pow flop / sec; task require size flop ⇒ lasts size

pow sec
I Simple (simplistic?) but more accurate become quickly intractable

Modeling Single-Hop Networks
I Simplistic: T = λ+ size

β ; Better: use β′ = min(β, Wmax

RTT) (TCP windowing)

Modeling Multi-Hop Networks
I Simplistic Models: Store & Forward or Wormhole

S

l1

l3

l2 pi ,j

MTU

S

l1

l3

l2

, Easy to implement; / Not realistic (TCP Congestion omitted)
I NS2 and other packet-level study the path of each and every network packet

, Realism commonly accepted; / Sloooooow

Martin Quinson Simulation for Experimenting HPC Systems The SimGrid Project 16/31

Analytical Network Models

TCP bandwidth sharing studied by several authors

I Data streams modeled as fluids in pipes

I Same model for single stream/multiple links or multiple stream/multiple links

flow L

link L

flow 2flow 1

flow 0
link 1 link 2

Notations

I L: set of links

I Cl : capacity of link l (Cl > 0)

I nl : amount of flows using link l

I F : set of flows; f ∈ P(L)

I λf : transfer rate of f

Feasibility constraint

I Links deliver their capacity at most: ∀l ∈ L,
∑
f3l

λf ≤ Cl

Martin Quinson Simulation for Experimenting HPC Systems The SimGrid Project 17/31

Analytical Network Models

TCP bandwidth sharing studied by several authors

I Data streams modeled as fluids in pipes

I Same model for single stream/multiple links or multiple stream/multiple links

flow L

link L

flow 2flow 1

flow 0
link 1 link 2

Notations

I L: set of links

I Cl : capacity of link l (Cl > 0)

I nl : amount of flows using link l

I F : set of flows; f ∈ P(L)

I λf : transfer rate of f

Feasibility constraint

I Links deliver their capacity at most: ∀l ∈ L,
∑
f3l

λf ≤ Cl

Martin Quinson Simulation for Experimenting HPC Systems The SimGrid Project 17/31

Max-Min Fairness

Objective function: maximize min
f ∈F

(λf)

I Equilibrium reached if increasing any λf decreases a λ′f (with λf > λ′f)

I Very reasonable goal: gives fair share to anyone

I Optionally, one can add prorities wi for each flow i
; maximizing min

f∈F
(wf λf)

Bottleneck links
I For each flow f , one of the links is the limiting one l

(with more on that link l , the flow f would get more overall)

I The objective function gives that l is saturated, and f gets the biggest share

∀f ∈ F , ∃l ∈ f ,
∑
f ′3l

λf ′ = Cl and λf = max{λf ′ , f ′ 3 l}

L. Massoulié and J. Roberts, Bandwidth sharing: objectives and algorithms,
IEEE/ACM Trans. Netw., vol. 10, no. 3, pp. 320-328, 2002.

Martin Quinson Simulation for Experimenting HPC Systems The SimGrid Project 18/31

Max-Min Fairness Computation: Backbone Example

Algorithm: loop on these steps

I search for the bottleneck link (so that share of its flows is minimal)

I set all flows using it

I remove the link
Cl : capacity of link l ; nl : amount of flows using l ; λf : transfer rate of f .

Flow 2

link 2

link 4

Flow 1

link 3link 1

link 0

C0 = 1 n0 = 1
C1 = 1000 n1 = 1
C2 = 1000 n2 = 2
C3 = 1000 n3 = 1
C4 = 1000 n4 = 1

λ1 =
λ2 =

I The limiting link is 0

I This fixes λ2 = 1. Update the links
I The limiting link is 2
I This fixes λ1 = 999

Martin Quinson Simulation for Experimenting HPC Systems The SimGrid Project 19/31

Max-Min Fairness Computation: Backbone Example

Algorithm: loop on these steps

I search for the bottleneck link (so that share of its flows is minimal)

I set all flows using it

I remove the link
Cl : capacity of link l ; nl : amount of flows using l ; λf : transfer rate of f .

Flow 2

link 2

link 4

Flow 1

link 3link 1

link 0

C0 = 0 n0 = 0
C1 = 1000 n1 = 1
C2 = 999 n2 = 1
C3 = 1000 n3 = 1
C4 = 999 n4 = 0

λ1 =
λ2 = 1

I The limiting link is 0
I This fixes λ2 = 1. Update the links

I The limiting link is 2
I This fixes λ1 = 999

Martin Quinson Simulation for Experimenting HPC Systems The SimGrid Project 19/31

Max-Min Fairness Computation: Backbone Example

Algorithm: loop on these steps

I search for the bottleneck link (so that share of its flows is minimal)

I set all flows using it

I remove the link
Cl : capacity of link l ; nl : amount of flows using l ; λf : transfer rate of f .

Flow 2

link 2

link 4

Flow 1

link 3link 1

link 0

C0 = 0 n0 = 0
C1 = 1000 n1 = 1
C2 = 999 n2 = 1
C3 = 1000 n3 = 1
C4 = 999 n4 = 0

λ1 =
λ2 = 1

I The limiting link is 0
I This fixes λ2 = 1. Update the links
I The limiting link is 2

I This fixes λ1 = 999

Martin Quinson Simulation for Experimenting HPC Systems The SimGrid Project 19/31

Max-Min Fairness Computation: Backbone Example

Algorithm: loop on these steps

I search for the bottleneck link (so that share of its flows is minimal)

I set all flows using it

I remove the link
Cl : capacity of link l ; nl : amount of flows using l ; λf : transfer rate of f .

Flow 2

link 2

link 4

Flow 1

link 3link 1

link 0

C0 = 0 n0 = 0
C1 = 1 n1 = 0
C2 = 0 n2 = 0
C3 = 1 n3 = 0
C4 = 999 n4 = 0

λ1 = 999
λ2 = 1

I The limiting link is 0
I This fixes λ2 = 1. Update the links
I The limiting link is 2
I This fixes λ1 = 999

Martin Quinson Simulation for Experimenting HPC Systems The SimGrid Project 19/31

How are these models used in practice?

Simulation kernel main loop

Data: set of resources with working rate

1. Some actions get created (by application) and assigned to resources

2. Compute share of everyone (resource sharing algorithms)

3. Compute the earliest finishing action, advance simulated time to that time

4. Remove finished actions

5. Loop back to 2

Simulated time

��
��
��

��
��
��

�
�
�

�
�
�

Availability traces are just events
t0 → 100%, t1 → 50%, t2 → 80%, etc.

��
��
��

��
��
��

���������������
�����
�����
�����
���
���
���
���
������

������������������������������������
����
����
������
����
����

��
��
��
��

���
���
���
���

��
��
��
��
��
��
��
��
���
���
���

���
���
���

Simulated time

�
�
�

�
�
�

Also qualitative state changes (on/off)

Martin Quinson Simulation for Experimenting HPC Systems The SimGrid Project 20/31

How are these models used in practice?

Simulation kernel main loop

Data: set of resources with working rate

1. Some actions get created (by application) and assigned to resources

2. Compute share of everyone (resource sharing algorithms)

3. Compute the earliest finishing action, advance simulated time to that time

4. Remove finished actions

5. Loop back to 2

��
��
��
��

��
��
��
��
��
��
��
��

���
���
���
���

��
��
��
��

���
���
���

���
���
���

Simulated time

��
��
��

��
��
��

�
�
�

�
�
�

Availability traces are just events
t0 → 100%, t1 → 50%, t2 → 80%, etc.

��
��
��

��
��
��

���������������
�����
�����
�����
���
���
���
���
������

������������������������������������
����
����
������
����
����

��
��
��
��

���
���
���
���

��
��
��
��
��
��
��
��
���
���
���

���
���
���

Simulated time

�
�
�

�
�
�

Also qualitative state changes (on/off)

Martin Quinson Simulation for Experimenting HPC Systems The SimGrid Project 20/31

How are these models used in practice?

Simulation kernel main loop

Data: set of resources with working rate

1. Some actions get created (by application) and assigned to resources

2. Compute share of everyone (resource sharing algorithms)

3. Compute the earliest finishing action, advance simulated time to that time

4. Remove finished actions

5. Loop back to 2

��
��
��
��

��
��
��
��
��
��
��
��

���
���
���
���

��
��
��
��

���
���
���

���
���
���

Simulated time

��
��
��

��
��
��

�
�
�

�
�
�

Availability traces are just events
t0 → 100%, t1 → 50%, t2 → 80%, etc.

��
��
��

��
��
��

���������������
�����
�����
�����
���
���
���
���
������

������������������������������������
����
����
������
����
����

��
��
��
��

���
���
���
���

��
��
��
��
��
��
��
��
���
���
���

���
���
���

Simulated time

�
�
�

�
�
�

Also qualitative state changes (on/off)

Martin Quinson Simulation for Experimenting HPC Systems The SimGrid Project 20/31

How are these models used in practice?

Simulation kernel main loop

Data: set of resources with working rate

1. Some actions get created (by application) and assigned to resources

2. Compute share of everyone (resource sharing algorithms)

3. Compute the earliest finishing action, advance simulated time to that time

4. Remove finished actions

5. Loop back to 2

t

��
��
��
��
��
��
��
��

������
������
������
������������
������

��
��
��
��

��
��
��
��

��
��
��
��
��
��
��
��

���
���
���
���

��
��
��
��

���
���
���

���
���
���

Simulated time

��
��
��

��
��
��

�
�
�

�
�
�

Availability traces are just events
t0 → 100%, t1 → 50%, t2 → 80%, etc.

��
��
��

��
��
��

���������������
�����
�����
�����
���
���
���
���
������

������������������������������������
����
����
������
����
����

��
��
��
��

���
���
���
���

��
��
��
��
��
��
��
��
���
���
���

���
���
���

Simulated time

�
�
�

�
�
�

Also qualitative state changes (on/off)

Martin Quinson Simulation for Experimenting HPC Systems The SimGrid Project 20/31

How are these models used in practice?

Simulation kernel main loop

Data: set of resources with working rate

1. Some actions get created (by application) and assigned to resources

2. Compute share of everyone (resource sharing algorithms)

3. Compute the earliest finishing action, advance simulated time to that time

4. Remove finished actions

5. Loop back to 2

t

��
��
��
��
��
��
��
��

������
������
������
������������
������

��
��
��
��

��
��
��
��
��
��
��
��

��
��
��
��

���
���
���
���

��
��
��
��

���
���
���

���
���
���

Simulated time

��
��
��

��
��
��

�
�
�

�
�
�

Availability traces are just events
t0 → 100%, t1 → 50%, t2 → 80%, etc.

��
��
��

��
��
��

���������������
�����
�����
�����
���
���
���
���
������

������������������������������������
����
����
������
����
����

��
��
��
��

���
���
���
���

��
��
��
��
��
��
��
��
���
���
���

���
���
���

Simulated time

�
�
�

�
�
�

Also qualitative state changes (on/off)

Martin Quinson Simulation for Experimenting HPC Systems The SimGrid Project 20/31

How are these models used in practice?

Simulation kernel main loop

Data: set of resources with working rate

1. Some actions get created (by application) and assigned to resources

2. Compute share of everyone (resource sharing algorithms)

3. Compute the earliest finishing action, advance simulated time to that time

4. Remove finished actions

5. Loop back to 2

t

������
������
������
������������
������

��
��
��
��

��
��
��
��

���
���
���

���
���
���

Simulated time

��
��
��

��
��
��

�
�
�

�
�
�

Availability traces are just events
t0 → 100%, t1 → 50%, t2 → 80%, etc.

��
��
��

��
��
��

���������������
�����
�����
�����
���
���
���
���
������

������������������������������������
����
����
������
����
����

��
��
��
��

���
���
���
���

��
��
��
��
��
��
��
��
���
���
���

���
���
���

Simulated time

�
�
�

�
�
�

Also qualitative state changes (on/off)

Martin Quinson Simulation for Experimenting HPC Systems The SimGrid Project 20/31

How are these models used in practice?

Simulation kernel main loop

Data: set of resources with working rate

1. Some actions get created (by application) and assigned to resources

2. Compute share of everyone (resource sharing algorithms)

3. Compute the earliest finishing action, advance simulated time to that time

4. Remove finished actions

5. Loop back to 2

t

��
��
��
���

�
�
�

�
�
�
�

�
�
�
�

������
������
������
������������
������

��
��
��
��

���
���
���

���
���
���

Simulated time

��
��
��

��
��
��

�
�
�

�
�
�

Availability traces are just events
t0 → 100%, t1 → 50%, t2 → 80%, etc.

��
��
��

��
��
��

���������������
�����
�����
�����
���
���
���
���
������

������������������������������������
����
����
������
����
����

��
��
��
��

���
���
���
���

��
��
��
��
��
��
��
��
���
���
���

���
���
���

Simulated time

�
�
�

�
�
�

Also qualitative state changes (on/off)

Martin Quinson Simulation for Experimenting HPC Systems The SimGrid Project 20/31

How are these models used in practice?

Simulation kernel main loop

Data: set of resources with working rate

1. Some actions get created (by application) and assigned to resources

2. Compute share of everyone (resource sharing algorithms)

3. Compute the earliest finishing action, advance simulated time to that time

4. Remove finished actions

5. Loop back to 2

t

���
���
���

���
���
���

��
��
��
��

��
��
��
��

�
�
�
�

�
�
�
�

�
�
�
�

������
������
������
������������
������

��
��
��
��

Simulated time

��
��
��

��
��
��

�
�
�

�
�
�

Availability traces are just events
t0 → 100%, t1 → 50%, t2 → 80%, etc.

��
��
��

��
��
��

���������������
�����
�����
�����
���
���
���
���
������

������������������������������������
����
����
������
����
����

��
��
��
��

���
���
���
���

��
��
��
��
��
��
��
��
���
���
���

���
���
���

Simulated time

�
�
�

�
�
�

Also qualitative state changes (on/off)

Martin Quinson Simulation for Experimenting HPC Systems The SimGrid Project 20/31

How are these models used in practice?

Simulation kernel main loop

Data: set of resources with working rate

1. Some actions get created (by application) and assigned to resources

2. Compute share of everyone (resource sharing algorithms)

3. Compute the earliest finishing action, advance simulated time to that time

4. Remove finished actions

5. Loop back to 2

t

���
���
���

���
���
���

��
��
��
��

��
��
��
��

�
�
�
�

�
�
�
�

�
�
�
�

������
������
������
������������
������

��
��
��
��

Simulated time

��
��
��

��
��
��

�
�
�

�
�
�

Availability traces are just events
t0 → 100%, t1 → 50%, t2 → 80%, etc.

��
��
��

��
��
��

���������������
�����
�����
�����
���
���
���
���
������

������������������������������������
����
����
������
����
����

��
��
��
��

���
���
���
���

��
��
��
��
��
��
��
��
���
���
���

���
���
���

Simulated time

�
�
�

�
�
�

Also qualitative state changes (on/off)

Martin Quinson Simulation for Experimenting HPC Systems The SimGrid Project 20/31

SIMGRID Internals in a Nutshell for Users

SimGrid Layers

I MSG: User interface

I Simix: processes, synchro

I SURF: Resources

I (LMM: MaxMin systems)

Changing the Model

I “--cfg=network model”

I Several fluid models

I Several constant time

I GTNetS wrapper

I Build your own

LMM

SIMIX

SURF

MSG

Actions{372
435

245
245

530
530

50
664work

remaining

variable

...

x1

x2

x2

x2

x3

x3

xn+ +

+

... ≤ CP

≤ CL1

≤ CL4

≤ CL2

≤ CL3

  

Constraints

                                  

Variables

Conditions{

... Process




us
er

co
de

us
er

co
de

us
er

co
de

us
er

co
de

us
er

co
de

...

Martin Quinson Simulation for Experimenting HPC Systems The SimGrid Project 21/31

Outline

Introduction and Context
High Performance Computing for Science
In vivo approach (direct experimentation)
In vitro approach (emulation)
In silico approach (simulation)

The SimGrid Project
User Interface(s)
SimGrid Models
SimGrid Evaluation

Grid Simulation and Open Science
Recapping Objectives
SimGrid and Open Science
HPC experiments and Open Science

Conclusions

Martin Quinson Simulation for Experimenting HPC Systems The SimGrid Project 22/31

Validation experiments on a single link
Experimental settings
TCP

source

TCP

sink

Link

1 flow

I Compute achieved bandwidth as function of S
I Fixed L=10ms and B=100MB/s

Evaluation Results

NS2

GTNets

0.001 0.01 0.1 1 10 100 1000

0

300

200

100

900

400

500

600

700

800

Data size (MB)

T
h

ro
u

g
h

p
u

t
(K

B
/s

)

SSFNet (0.01)

SSFNet (0.2)

Old SimGrid

Data size (MB)

 0

 0.5

 1

 1.5

 2

 0.001 0.01 0.1 1 10 100 1000

|ε
|

I Packet-level tools don’t completely agree
I SSFNet TCP FAST INTERVAL bad default
I GTNetS is equally distant from others

I Old SimGrid model omitted slow start effects

⇒ Statistical analysis of GTNetS slow-start
; Better instantiation of MaxMin model

β′′ ; .92× β′; λ ; 10.4× λ

I Resulting validity range quite acceptable

S |ε| |εmax |
S < 100KB ≈ 12% ≈ 162%
S > 100KB ≈ 1% ≈ 6%

Martin Quinson Simulation for Experimenting HPC Systems The SimGrid Project 23/31

Validation experiments on a single link
Experimental settings
TCP

source

TCP

sink

Link

1 flow

I Compute achieved bandwidth as function of S
I Fixed L=10ms and B=100MB/s

Evaluation Results

NS2

GTNets

0.001 0.01 0.1 1 10 100 1000

0

300

200

100

900

400

500

600

700

800

Data size (MB)

T
h

ro
u

g
h

p
u

t
(K

B
/s

)

SSFNet (0.01)

SSFNet (0.2)

Old SimGrid
New SimGrid

Data size (MB)

 0

 0.5

 1

 1.5

 2

 0.001 0.01 0.1 1 10 100 1000

|ε
|

I Packet-level tools don’t completely agree
I SSFNet TCP FAST INTERVAL bad default
I GTNetS is equally distant from others

I Old SimGrid model omitted slow start effects
⇒ Statistical analysis of GTNetS slow-start
; Better instantiation of MaxMin model

β′′ ; .92× β′; λ ; 10.4× λ

I Resulting validity range quite acceptable

S |ε| |εmax |
S < 100KB ≈ 12% ≈ 162%
S > 100KB ≈ 1% ≈ 6%

Martin Quinson Simulation for Experimenting HPC Systems The SimGrid Project 23/31

Validation experiments on random platforms

I 160 Platforms (generator: BRITE)

I β ∈ [10,128] MB/s; λ ∈ [0; 5] ms

I Flow size: S=10MB

I #flows: 150; #nodes ∈ [50; 200]

I |ε| < 0.2 (i.e., ≈ 22%);
|εmax | still challenging up to 461%

 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160

Experiment

 0

 0.5

 1

 1.5

 2

Mean Error (|ε|)
Max Error (|εmax |)

Maybe the error is not SimGrid’s

I Big error because GTNetS multi-phased

I Seen the same in NS3, emulation, ...

I Phase Effect: Periodic and deterministic
traffic may resonate [Floyd&Jacobson 91]

I Impossible in Internet (thx random noise)

**

*

**

*

*

*

**

**

*

*

*

*
*

**

*

**

*

*

*

*

*

**

*

**

*
*

**

*

*

*

*

**

*

*

*

*
*

*

*

*

**

*

**

*

*

**

*

**

*

*

*

*

**

*

*

**

**

*

*

**

**

*

*

*
*
*

*
*

*

**

*

*

**

*

*

**

*

*

*

*

**

*

*

*

*
**

*

**

*

**

*

**

**

*

**

*

**

*
*

round trip time ratio

N
o

d
e
 1

 t
h

ro
u

g
h

p
u

t
(%

)

1.0 1.2 1.4 1.6 1.8 2.0

0
2
0

4
0

6
0

8
0

1
0
0

; We’re adding random jitter to continue SIMGRID validation

Martin Quinson Simulation for Experimenting HPC Systems The SimGrid Project 24/31

Validation experiments on random platforms

I 160 Platforms (generator: BRITE)

I β ∈ [10,128] MB/s; λ ∈ [0; 5] ms

I Flow size: S=10MB

I #flows: 150; #nodes ∈ [50; 200]

I |ε| < 0.2 (i.e., ≈ 22%);
|εmax | still challenging up to 461%

 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160

Experiment

 0

 0.5

 1

 1.5

 2

Mean Error (|ε|)
Max Error (|εmax |)

Maybe the error is not SimGrid’s

I Big error because GTNetS multi-phased

I Seen the same in NS3, emulation, ...

I Phase Effect: Periodic and deterministic
traffic may resonate [Floyd&Jacobson 91]

I Impossible in Internet (thx random noise)

**

*

**

*

*

*

**

**

*

*

*

*
*

**

*

**

*

*

*

*

*

**

*

**

*
*

**

*

*

*

*

**

*

*

*

*
*

*

*

*

**

*

**

*

*

**

*

**

*

*

*

*

**

*

*

**

**

*

*

**

**

*

*

*
*
*

*
*

*

**

*

*

**

*

*

**

*

*

*

*

**

*

*

*

*
**

*

**

*

**

*

**

**

*

**

*

**

*
*

round trip time ratio

N
o

d
e
 1

 t
h

ro
u

g
h

p
u

t
(%

)

1.0 1.2 1.4 1.6 1.8 2.0

0
2
0

4
0

6
0

8
0

1
0
0

; We’re adding random jitter to continue SIMGRID validation

Martin Quinson Simulation for Experimenting HPC Systems The SimGrid Project 24/31

Simulation scalability assessment

Master/Workers on amd64 with 4Gb
#tasks Context #Workers

mecanism 100 500 1,000 5,000 10,000 25,000
1,000 ucontext 0.16 0.19 0.21 0.42 0.74 1.66

pthread 0.15 0.18 0.19 0.35 0.55 ?
java 0.41 0.59 0.94 7.6 27. ?

10,000 ucontext 0.48 0.52 0.54 0.83 1.1 1.97
pthread 0.51 0.56 0.57 0.78 0.95 ?

java 1.6 1.9 2.38 13. 40. ?
100,000 ucontext 3.7 3.8 4.0 4.4 4.5 5.5

pthread 4.7 4.4 4.6 5.0 5.23 ?
java 14. 13. 15. 29. 77. ?

1,000,000 ucontext 36. 37. 38. 41. 40. 41.
pthread 42. 44. 46. 48. 47. ?

java 121. 130. 134. 163. 200. ?

?: #semaphores reached system limit
(2 semaphores per user process,

System limit = 32k semaphores)

I These results are old already

I v3.3.3 is 30% faster

I v3.3.4 ; lazy evaluation

Extensibility with UNIX contextes
#tasks Stack #Workers

size 25,000 50,000 100,000 200,000
1,000 128Kb 1.6 † † †

12Kb 0.5 0.9 1.7 3.2
10,000 128Kb 2 † † †

12Kb 0.8 1.2 2 3.5
100,000 128Kb 5.5 † † †

12Kb 3.7 4.1 4.8 6.7
1,000,000 128Kb 41 † † †

12Kb 33 33.6 33.7 35.5
5,000,000 128Kb 206 † † †

12Kb 161 167 161 165

Scalability limit of GridSim

I 1 user process = 3 java threads
(code, input, output)

I System limit = 32k threads

⇒ at most 10,922 user processes

†: out of memory

Martin Quinson Simulation for Experimenting HPC Systems The SimGrid Project 25/31

Simulation scalability assessment

During Summer 2009, 2 interns @CERN evaluated grid simulators

I Attempted to simulate one day on grid (1.5 million file transfers)

I Their final requirements:
I Basic processing induce 30M operations daily
I User requests induce ≈2M operations daily
I Evaluations should consider one month of operation

Findings

Martin Quinson Simulation for Experimenting HPC Systems The SimGrid Project 26/31

Outline

Introduction and Context
High Performance Computing for Science
In vivo approach (direct experimentation)
In vitro approach (emulation)
In silico approach (simulation)

The SimGrid Project
User Interface(s)
SimGrid Models
SimGrid Evaluation

Grid Simulation and Open Science
Recapping Objectives
SimGrid and Open Science
HPC experiments and Open Science

Conclusions

Martin Quinson Simulation for Experimenting HPC Systems Grid Simulation and Open Science 27/31

Grid Simulation and Open Science

Requirement on Experimental Methodology (what do we want)
I Standard methodologies and tools: Grad students learn them to be operational

I Incremental knowledge: Read a paper, Reproduce its results, Improve.

I Reproducible results: Compare easily experimental scenarios
Reviewers can reproduce result, Peers can work incrementally (even after long time)

Current practices in the field (what do we have)
I Very little common methodologies and tools; many home-brewed tools

I Experimental settings rarely detailed enough in literature

These issues are tackled by the SimGrid community

I Released, open-source, stable simulation framework

I Extensive optimization and validation work

I Separation of simulated application and experimental conditions

I Are we there yet? Not quite

Martin Quinson Simulation for Experimenting HPC Systems Grid Simulation and Open Science 28/31

SimGrid and Open Science

Simulations are reproducible ... provided that authors ensure that

I Need to publish source code, platform file, statistic extraction scripts . . .

I Almost no one does it. I don’t (shame, shame). Why?

Technical issues to tackle
I Archiving facilities, Versionning, Branch support, Dependencies management

I Workflows automating execution of test campaigns (myexperiment.org)

I We already have most of them (Makefiles, Maven, debs, forges, repositories, . . .)

I But still, we don’t use it. Is the issue really technical?

Sociological issues to tackle

I A while ago, simulators were simple, only filling gant charts automatically

I We don’t have the culture of reproducibility:
I “My scientific contribution is the algorithm, not the crappy demo code”
I But your contribution cannot be assessed if it cannot be reproduced!

I I don’t have any definitive answer about how to solve it

Martin Quinson Simulation for Experimenting HPC Systems Grid Simulation and Open Science 29/31

myexperiment.org

SimGrid and Open Science

Simulations are reproducible ... provided that authors ensure that

I Need to publish source code, platform file, statistic extraction scripts . . .

I Almost no one does it. I don’t (shame, shame). Why?

Technical issues to tackle
I Archiving facilities, Versionning, Branch support, Dependencies management

I Workflows automating execution of test campaigns (myexperiment.org)

I We already have most of them (Makefiles, Maven, debs, forges, repositories, . . .)

I But still, we don’t use it. Is the issue really technical?

Sociological issues to tackle

I A while ago, simulators were simple, only filling gant charts automatically

I We don’t have the culture of reproducibility:
I “My scientific contribution is the algorithm, not the crappy demo code”
I But your contribution cannot be assessed if it cannot be reproduced!

I I don’t have any definitive answer about how to solve it

Martin Quinson Simulation for Experimenting HPC Systems Grid Simulation and Open Science 29/31

myexperiment.org

SimGrid and Open Science

Simulations are reproducible ... provided that authors ensure that

I Need to publish source code, platform file, statistic extraction scripts . . .

I Almost no one does it. I don’t (shame, shame). Why?

Technical issues to tackle
I Archiving facilities, Versionning, Branch support, Dependencies management

I Workflows automating execution of test campaigns (myexperiment.org)

I We already have most of them (Makefiles, Maven, debs, forges, repositories, . . .)

I But still, we don’t use it. Is the issue really technical?

Sociological issues to tackle

I A while ago, simulators were simple, only filling gant charts automatically

I We don’t have the culture of reproducibility:
I “My scientific contribution is the algorithm, not the crappy demo code”
I But your contribution cannot be assessed if it cannot be reproduced!

I I don’t have any definitive answer about how to solve it

Martin Quinson Simulation for Experimenting HPC Systems Grid Simulation and Open Science 29/31

myexperiment.org

HPC experiments and Open Science

Going further

I Issues we face in simulation are common to every experimental methodologies

I Tool we need to help Open Science arise in simulation would help others

I Why not step back and try to unit efforts?

What would a perfect world look like?

A simulation using SimGrid

logs

stats

visu

Availibility

Changes

Platform

Topology

Application

Deployment

Simulation Kernel

Application

Simulator

OutcomesScenario

Applicative
Workload

Parameters

Input

An experiment on Grid’5000

F
ig

u
re

fr
o

m
O

li
vi

er
R

ic
h

ar
d

Basic ideas are the same, even if huge amount of work ahead to factorize

Martin Quinson Simulation for Experimenting HPC Systems Grid Simulation and Open Science 30/31

HPC experiments and Open Science

Going further

I Issues we face in simulation are common to every experimental methodologies

I Tool we need to help Open Science arise in simulation would help others

I Why not step back and try to unit efforts?

What would a perfect world look like?

A simulation using SimGrid

logs

stats

visu

Availibility

Changes

Platform

Topology

Application

Deployment

Simulation Kernel

Application

Simulator

OutcomesScenario

Applicative
Workload

Parameters

Input

An experiment on Grid’5000

F
ig

u
re

fr
o

m
O

li
vi

er
R

ic
h

ar
d

Basic ideas are the same, even if huge amount of work ahead to factorize

Martin Quinson Simulation for Experimenting HPC Systems Grid Simulation and Open Science 30/31

Conclusions

HPC and Grid applications tuning and assessment

I Challenging to do; Several methodological ways: in vivo, in vitro, in silico

I No methodology sufficient, all needed together

The SimGrid simulation framework
I Mature framework: validated models, software quality assurance

I You should use it!

We only scratched the corner of the problem

I Open Science is a must! (please don’t say the truth to physicians or biologists)

I Technical issues faced, but even more sociological ones

I Solve it not only for simulation, but for all methodologies at the same time

We still have a large amount in front of us ,

Martin Quinson Simulation for Experimenting HPC Systems Conclusions 31/31

	Introduction and Context
	High Performance Computing for Science
	In vivo approach (direct experimentation)
	In vitro approach (emulation)
	In silico approach (simulation)

	The SimGrid Project
	User Interface(s)
	SimGrid Models
	SimGrid Evaluation

	Grid Simulation and Open Science
	Recapping Objectives
	SimGrid and Open Science
	HPC experiments and Open Science

	Conclusions

