CPU Emulation
for Wrekavoc



Validation of distributed
algorithms

Formal analysis too complex

Fallback to experimental validation
Validation in heterogeneous environments
Scalability of large experiments

No realistic simulation/emulation of a processor




To simulate or not to simulate?

Simulation may not be enough

Models are unrealistic

Application is not easily modeled

Use « emulation » instead — reuse existing processors

Emulate many processors using just one

Bend multi-core processor to your will!




Goal: the full emulation

Unused Unused

Unused

Fig. 1: An example of a CPU emulation problem. Here: N =4, a1 = as = az = a4 =
10, M=2C,={1,2}, Co={3}, 81 =P2=5,83=T7,54=0.



The full emulation?

« What about:

* Processor cache?
 Memory speed?
« Simultaneous multithreading?
* OK, let's focus on CPU speed only



Approaches

e Tools:
e Linux
e Cpusets (on top of Cgroups)
» Methods:
« Dynamic frequency scaling (abbrev. CPU-Freq)
e« CPU-Lim
* Fracas



Dynamic frequency scaling

AKA Intel Enhanced SpeedStep or AMD Cool'n'Quiet
Hardware solution to reduce:
e Heat

- Noise

« Power usage

Pros:

« No overhead of emulation
« Completely unintruisive
Cons:



CPU-Lim

Method available in Wrekavoc tool
The algorithm:

 If CPU usage = threshold » send SIGSTOP to the process
« If CPU usage < threshold » send SIGCONT to the process
CPU usage: CPU time of the process / process lifetime

Pros:

« Easy and almost POSIX-compliant

Cons:

« Intrusive and unscalable

« Decision to stop the process is made locally

« Sleeping is indistinguishable from preemption




Fracas

Based on KRASH tool
Uses Linux Cgroups
A predefined portion of the CPU is given to tasks burning CPU
All other processes are given the rest of the CPU time

Pros:

o Unintrusive
o Scalable

Cons:
« Sensitive to the configuration of the sched '
« Unportable to different OSes



Fracas (cont.)

Reserved CPU

User e
e l.}].l..."l...l...hhl...h
pProcesses User

Processes



Fracas & latency of the scheduler

®-® 0.1 ms
V-V 1 ms
A-A 10 ms

2.0_ 2.2 2.4 2.6 2.8
CPU Fr@quency [GHZz]

« Expected result: a straight line

* The lower frequency + better results



Evaluation

« Based on different types of work:

e CPU-intensive
 10-bound
» Multitasking
» Tests only for CPU speeds provided by freq. scaling

« Each test repeated 10 times




CPU-bound work

®-® CPU-Freq
V¥V--¥ CPU-Lim1l
A -A Fracas

20 22 24 26 2.8
CPU Frequency [GHz]

* Fracas & CPU-Freq are doing fine

« CPU-Lim gives unstable results



|O-bound work

®--® CPU-Freq
V-V CPU-Liml

1.8 20 22 24 26 2.8
CPU Frequency [GHZ]



Multitasking

10000
®-® CPU-Freq

20 22 24 26 . . . 1.8 20 22 24 26
CPU Frequency [GHZz] CPU Frequency [GHz]

Multiprocessing: Multithreading:

« CPU-Freq shows the best behavior « CPU-Freq shows th

« CPU-Lim introduces visible overhead « CPU-Lim cant Control

. Fracas is stable, yet gives unexpected . Fracasis stable
results (again)



Summary

« CPU-Freq:
« Very good results
« Coarse granularity
« CPU-Lim:
« Flawed
o Intrusive
« Hardly scalable
- Fracas:
« Good behavior for a single-task workload
« Scalable
« Bad behavior for multitask workload




STREAM benchmark

®-® CPU-Freq
V--¥ CPU-Lim1l

20 22 24 26 2.8
CPU Frequency [GHz]

 All methods change the perceived memo%g
e ... and each method in its own, pecullar wa% }




Future Work

Improve Fracas method to cover multitask work
Merge Fracas method with Wrekavoc

Devise a method to emulate memory speed
Devise methods to emulate other aspects of CPU

Take over the world )



Thank you
for your attention.



	Diapo 1
	Diapo 2
	Diapo 3
	Diapo 4
	Diapo 5
	Diapo 6
	Diapo 7
	Diapo 8
	Diapo 9
	Diapo 10
	Diapo 11
	Diapo 12
	Diapo 13
	Diapo 14
	Diapo 15
	Diapo 16
	Diapo 17
	Diapo 18
	Diapo 19

