Jens Gustedt

INRIA Lorraine & LORIA AlGorille

Jens Gustedt

INRIA Lorraine & LORIA AlGorithmes pour la Grille

Jens Gustedt

INRIA Lorraine & LORIA AlGorithmes pour la grille

Jens Gustedt

INRIA Lorraine & LORIA AlGorithmes pour la grille

RINRIA AlGorille

LOTIA

Jens Gustedt

INRIA Lorraine & LORIA AlGorithmes pour la grille

RINRIA AlGorille

LOTIA

Jens Gustedt

INRIA Lorraine & LORIA AlGorithmes pour la grille

Introduction ... and the Scientific Community Structuring applications for scalability Transparent resource management Experimental validation

NRIA AlGorille

LOTIA

Algorithm: A concise description of a technique to solve a given problem.

Efficiency: Ensure that the resource usage of an algorithms is as low as possible.

Proof: May be a theoretical proof (*e.g* on the bound of the number of operations) or a reproducible experimental study of the behavior.

RINRIA AlGorille

Loria

Algorithm: A concise description of a technique to solve a given problem.

Efficiency: Ensure that the resource usage of an algorithms is as low as possible.

Proof: May be a theoretical proof (*e.g* on the bound of the number of operations) or a reproducible experimental study of the behavior.

RINRIA AlGorille

3/30

Algorithm: A concise description of a technique to solve a given problem.

Efficiency: Ensure that the resource usage of an algorithms is as low as possible.

Proof: May be a theoretical proof (*e.g* on the bound of the number of operations) or a reproducible experimental study of the behavior.

RINRIA AlGorille

3/30

- Algorithm: A concise description of a technique to solve a given problem.
- Efficiency: Ensure that the resource usage of an algorithms is as low as possible.
 - Proof: May be a theoretical proof (*e.g* on the bound of the number of operations) or a reproducible experimental study of the behavior.

RINRIA AlGorille

3/30

The notion 'Grid' was introduced in 1998 by Foster & Kesselmann:

INRIA AlGorille Mittagen Algorithmente Al

The notion 'Grid' was introduced in 1998 by Foster & Kesselmann:

INRIA AlGorille Mittagen Algorithmente Al

The notion 'Grid' was introduced in 1998 by Foster & Kesselmann:

Idea: Use resources on the net

- computing power
- bandwidth
- storage

transparently, like we use electricity:

anonymous

The notion 'Grid' was introduced in 1998 by Foster & Kesselmann:

Idea: Use resources on the net

- computing power
- bandwidth
- storage

transparently, like we use electricity:

Idea: Use resources on the net

- computing power
- bandwidth
- storage

transparently, like we use electricity:

Idea: Use resources on the net

- computing power
- bandwidth
- storage

transparently, like we use electricity:

Idea: Use resources on the net

- computing power
- bandwidth
- storage

transparently, like we use electricity:

Idea: Use resources on the net

- computing power
- bandwidth
- storage

transparently, like we use electricity:

customer provider

anonymous

Layer model of a grid architecture:

applications
middleware
services
infrastructure

Layer model of a grid architecture:

applications
middleware
services
infrastructure

Layer model of a grid architecture:

applications		
middleware		
services		
infrastructure	soft and hardware	

A (10) × (10) × (10)

Layer model of a grid architecture:

applications
middleware
services

Layer model of a grid architecture:

applications
middleware
services

scheduling, data management...

RINRIA AlGorille

Jens Gustedt (INRIA)

Layer model of a grid architecture:

Layer model of a grid architecture:

applications
middleware
services
infrastructure

assemble service into platform API

RINRIA AlGorille

Loria

Jens Gustedt (INRIA)

Layer model of a grid architecture:

applications middleware services infrastructure

INRIA AlGorille Mittagen Algorithmente Al

Layer model of a grid architecture:

INRIA AlGorille Mittagen Algorithmente Al

Three Research Themes

- Structuring applications for scalability
- Transparent resource management
- Experimental validation

Software

Conclusion

- ... and the Scientific Community
- 3) Three Challenges
 - algorithmic
 - conceptua
 - methodological

Three Research Themes

- Structuring applications for scalability
- Transparent resource management
- Experimental validation

Software

Conclusion

NRIA AlGorille

LOTIA

Introduction

- ... and the Scientific Community
- Three Challenges
 - algorithmic
 - conceptual
 - methodological

Three Research Themes

- Structuring applications for scalability
- Transparent resource management
- Experimental validation

Software

Conclusion

RINRIA AlGorille

Introduction

- ... and the Scientific Community
- Three Challenges
 - algorithmic
 - conceptual
 - methodological

Three Research Themes

- Structuring applications for scalability
- Transparent resource management
- Experimental validation

Software

Conclusion

RINRIA AlGorille

Introduction

- ... and the Scientific Community
- Three Challenges
 - algorithmic
 - conceptual
 - methodological

Three Research Themes

- Structuring applications for scalability
- Transparent resource management
- Experimental validation

Software

Conclusion

RINRIA AlGorille

Introduction

- ... and the Scientific Community
- Three Challenges
 - algorithmic
 - conceptual
 - methodological

Three Research Themes

- Structuring applications for scalability
- Transparent resource management
- Experimental validation

Software

LOTIA

Introduction

The Team

- ... and the Scientific Community
- 3 Three Challenges
 - algorithmic
 - conceptua
 - methodological

Three Research Themes

- Structuring applications for scalability
- Transparent resource management
- Experimental validation

Software

Conclusion

NRIA AlGorille

The Team

Permanents:

Jens Gustedt Emmanuel Jeannot Martin Quinson Frédéric Suter

External Collaborator: Stephane Vialle

Temporary: Pierre-Nicolas Clauss

Malek Cherier (SimGrid) Xavier Delaruelle (Grid5000)

Luiz-Angelo Steffenel

Secretary: Céline Simon (DR INRIA) (CR INRIA) (MdC UHP/ESIAL) (MdC UHP)

(prof Supélec, Metz Campus)

Tchimou N'Takpé

Olivier Dubuisson (Wrekavoc) Léo Ghemtio (docking)

イロト イポト イヨト イヨト

RINRIA AlGorille

LOTIA

(ATER Nancy 2)

AlGorille

Jens Gustedt (INRIA)
The Team

Permanents:

Jens Gustedt Emmanuel Jeannot Martin Quinson Frédéric Suter

External Collaborator: Stephane Vialle

Temporary: Pierre-Nicolas Clauss

Malek Cherier (SimGrid) Xavier Delaruelle (Grid5000)

Luiz-Angelo Steffenel

Secretary: Céline Simon (DR INRIA) (CR INRIA) (MdC UHP/ESIAL) (MdC UHP)

(prof Supélec, Metz Campus)

Tchimou N'Takpé

Olivier Dubuisson (Wrekavoc) Léo Ghemtio (docking)

イロト イポト イヨト イヨト

RINRIA AlGorille

LOTIA

(ATER Nancy 2)

AlGorille

Jens Gustedt (INRIA)

The Team

The Team

Permanents:

Jens Gustedt Emmanuel Jeannot Martin Quinson Frédéric Suter

External Collaborator:

Stephane Vialle

Temporary: Pierre-Nicolas Clauss

Malek Cherier (SimGrid) Xavier Delaruelle (Grid5000)

Luiz-Angelo Steffenel

Secretary: Céline Simon

```
(DR INRIA)
(CR INRIA)
(MdC UHP/ESIAL)
(MdC UHP)
```

(prof Supélec, Metz Campus)

Tchimou N'Takpé

Olivier Dubuisson (Wrekavoc) Léo Ghemtio (docking)

イロト イポト イヨト イヨト

RINRIA AlGorille

Loria

(ATER Nancy 2)

Jens Gustedt (INRIA)

AlGorille

The Team

Permanents:

Jens Gustedt Emmanuel Jeannot Martin Quinson Frédéric Suter

External Collaborator:

Stephane Vialle

Temporary:

Pierre-Nicolas Clauss

Malek Cherier (SimGrid) Xavier Delaruelle (Grid5000)

Luiz-Angelo Steffenel

Secretary:

Céline Simon

(DR INRIA) (CR INRIA) (MdC UHP/ESIAL) (MdC UHP)

(prof Supélec, Metz Campus)

Tchimou N'Takpé

Olivier Dubuisson (Wrekavoc) Léo Ghemtio (docking)

イロト イポト イヨト イヨト

RINRIA AlGorille

Loria

(ATER Nancy 2)

Jens Gustedt (INRIA)

AlGorille

(UHP)

Outline

Introduction

The Team

- ... and the Scientific Community
- 3 Three Challenges
 - algorithmic
 - conceptua
 - methodological

Three Research Themes

- Structuring applications for scalability
- Transparent resource management
- Experimental validation

Software

Conclusion

RINRIA AlGorille

CoreGrid: EU

- GridExplorer, AGIR: national ACI
- Grid5000
- Alpage: ARA MDMSA
- RGE
- PRST Région Lorraine: MIS

LOTIA

CoreGrid: EU

GridExplorer, AGIR: national ACI

- Grid5000
- Alpage: ARA MDMSA
- RGE
- PRST Région Lorraine: MIS

LOTIA

- CoreGrid: EU
- GridExplorer, AGIR: national ACI
- Grid5000
- Alpage: ARA MDMSA
- RGE
- PRST Région Lorraine: MIS

- CoreGrid: EU
- GridExplorer, AGIR: national ACI
- Grid5000
- Alpage: ARA MDMSA
- RGE
- PRST Région Lorraine: MIS

RINRIA AlGorille

The Team ... and the Scientific Community

- CoreGrid: EU
- GridExplorer, AGIR: national ACI
- Grid5000
- Alpage: ARA MDMSA
- RGE
- PRST Région Lorraine: MIS

Loria

The Team ... and the Scientific Community

- CoreGrid: EU
- GridExplorer, AGIR: national ACI
- Grid5000
- Alpage: ARA MDMSA
- RGE
- PRST Région Lorraine: MIS

RINRIA AlGorille

Outline

... and the Scientific Community **Three Challenges** algorithmic conceptual methodological Structuring applications for scalability Transparent resource management

Loria

Outline

... and the Scientific Community **Three Challenges** algorithmic Structuring applications for scalability Transparent resource management

LOTIA

algorithmic

The algorithmic challenge: overcome spatial and temporal distances

Grids are distributed environments:

latency is proportional to the distance

bandwidth is restricted

Loria

algorithmic

The algorithmic challenge: overcome spatial and temporal distances

Grids are distributed environments:

Iatency is proportional to the distance (speed of light!)

bandwidth is restricted

LOTIA

13/30

algorithmic

The algorithmic challenge: overcome spatial and temporal distances

Grids are distributed environments:

- latency is proportional to the distance (speed of light!)
- bandwidth is restricted

LOTIA

13/30

algorithmic

The algorithmic challenge: overcome spatial and temporal distances

Grids are distributed environments:

- latency is proportional to the distance (speed of light!)
- bandwidth is restricted

We have to organize

LOTIA

13/30

algorithmic

The algorithmic challenge: overcome spatial and temporal distances

Grids are distributed environments:

- latency is proportional to the distance (speed of light!)
- bandwidth is restricted

We have to organize

tasks

LOTIA

13/30

algorithmic

The algorithmic challenge: overcome spatial and temporal distances

Grids are distributed environments:

- latency is proportional to the distance (speed of light!)
- bandwidth is restricted

We have to organize

tasks

data

LOTIA

13/30

algorithmic

The algorithmic challenge: overcome spatial and temporal distances

Grids are distributed environments:

- latency is proportional to the distance (speed of light!)
- bandwidth is restricted

We have to organize

LOTIA

13/30

algorithmic

The algorithmic challenge: overcome spatial and temporal distances

Grids are distributed environments:

- latency is proportional to the distance (speed of light!)
- bandwidth is restricted

We have to organize

LOTIA

13/30

algorithmic

The algorithmic challenge: overcome spatial and temporal distances

Grids are distributed environments:

- Iatency is proportional to the distance (speed of light!)
- bandwidth is restricted

We have to organize

RINRIA AlGorille

13/30

Outline

... and the Scientific Community **Three Challenges** conceptual Structuring applications for scalability Transparent resource management

LOTIA

Three Challenges co

conceptual

The conceptual challenge: reconcile differing objectives

customer

provider

anonymous

Jens Gustedt (INRIA)

RINRIA AlGorille

Three Challenges co

conceptual

The conceptual challenge: reconcile differing objectives

customer broker provider *anonymous*

RINRIA AlGorille

Three Challenges co

conceptual

The conceptual challenge: reconcile differing objectives

customer broker provider role anonymous

RINRIA AlGorille

Three Challenges con

conceptual

The conceptual challenge: reconcile differing objectives

RINRIA

AlGorille

Outline

... and the Scientific Community **Three Challenges** methodological Structuring applications for scalability Transparent resource management

LOTIA

The methodological challenge: performance evaluation

On top of all these difficulties: the problem of performance evaluation.

- Compare different algorithms in a reliable and reproducible way.
- Thereby demonstrate the progress our solutions provide.
- We have to
 - predict
 - control
 - evaluate

the performance in a setting that is as wide as possible.

LOTIA

The methodological challenge: performance evaluation

On top of all these difficulties: the problem of performance evaluation.

• Compare different algorithms in a reliable and reproducible way.

• Thereby demonstrate the progress our solutions provide.

We have to

- predict
- control
- evaluate

the performance in a setting that is as wide as possible.

LOTIA

The methodological challenge: performance evaluation

On top of all these difficulties: the problem of performance evaluation.

- Compare different algorithms in a reliable and reproducible way.
- Thereby demonstrate the progress our solutions provide.

We have to

- predict
- control
- evaluate

the performance in a setting that is as wide as possible.

LOTIA

The methodological challenge: performance evaluation

On top of all these difficulties: the problem of performance evaluation.

- Compare different algorithms in a reliable and reproducible way.
- Thereby demonstrate the progress our solutions provide.

We have to

- predict
- control
- evaluate

the performance in a setting that is as wide as possible.

LOTIA

The methodological challenge: performance evaluation

On top of all these difficulties: the problem of performance evaluation.

- Compare different algorithms in a reliable and reproducible way.
- Thereby demonstrate the progress our solutions provide.
- We have to
 - predict
 - control
 - evaluate

the performance in a setting that is as wide as possible.

RINRIA AlGorille

The methodological challenge: performance evaluation

On top of all these difficulties: the problem of performance evaluation.

- Compare different algorithms in a reliable and reproducible way.
- Thereby demonstrate the progress our solutions provide.
- We have to
 - predict
 - control
 - evaluate

the performance in a setting that is as wide as possible.

RINRIA AlGorille

The methodological challenge: performance evaluation

On top of all these difficulties: the problem of performance evaluation.

- Compare different algorithms in a reliable and reproducible way.
- Thereby demonstrate the progress our solutions provide.
- We have to
 - predict
 - control
 - evaluate

the performance in a setting that is as wide as possible.

RINRIA AlGorille

The methodological challenge: performance evaluation

On top of all these difficulties: the problem of performance evaluation.

- Compare different algorithms in a reliable and reproducible way.
- Thereby demonstrate the progress our solutions provide.
- We have to
 - predict
 - control
 - evaluate

the performance in a setting that is as wide as possible.

RINRIA AlGorille

The methodological challenge: performance evaluation

On top of all these difficulties: the problem of performance evaluation.

- Compare different algorithms in a reliable and reproducible way.
- Thereby demonstrate the progress our solutions provide.
- We have to
 - predict
 - control
 - evaluate

the performance in a setting that is as wide as possible.

RINRIA AlGorille
Outline

... and the Scientific Community Three Research Themes Structuring applications for scalability Transparent resource management Experimental validation

RINRIA AlGorille

Outline

... and the Scientific Community Three Research Themes Structuring applications for scalability Transparent resource management Experimental validation

LOTIA

Structuring applications for scalability

Models and algorithms for large scale computations

Cellular Networks

- Matrix-based problems from Natural Science (Physics, biochemistry, ...)
- Graphs and other Dynamic Data Structures.

Structuring applications for scalability

Models and algorithms for large scale computations

- Cellular Networks
- Matrix-based problems from Natural Science (Physics, biochemistry, ...)
- Graphs and other Dynamic Data Structures.

LOTIA

20/30

Structuring applications for scalability

Models and algorithms for large scale computations

- Cellular Networks
- Matrix-based problems from Natural Science (Physics, biochemistry, ...)
- Graphs and other Dynamic Data Structures.

LOTIA

20/30

Outline

1 Introduction

- 2) The Team
 - ... and the Scientific Community
- 3 Three Challenges
 - algorithmic
 - conceptua
 - methodological

Three Research Themes

- Structuring applications for scalability
- Transparent resource management
- Experimental validation

Software

Conclusion

LOTIA

Three Research Themes Service Layer

Transparent Resource Management

Efficient algorithms for

• Sequential and parallel task scheduling

- Data exchange
- Distribution and redistribution of data.

LOTIA

Three Research Themes Service Layer

Transparent Resource Management

Efficient algorithms for

- Sequential and parallel task scheduling
- Data exchange
- Distribution and redistribution of data.

LOTIA

Three Research Themes Service Layer

Transparent Resource Management

Efficient algorithms for

- Sequential and parallel task scheduling
- Data exchange
- Distribution and redistribution of data.

LOTIA

Outline

... and the Scientific Community Three Research Themes Structuring applications for scalability Transparent resource management Experimental validation

LOTIA

Simulation ⇒ SimGrid

- Emulation => Wrekavoc
- Large Scale Experiments —> Grid5000

Pilot Applications => parXXL

RINRIA AlGorille

LOTIA

- Simulation \implies SimGrid
- Emulation => Wrekavoc
- Large Scale Experiments —> Grid5000
- Pilot Applications => parXXL

- Simulation \implies SimGrid
- Emulation => Wrekavoc
- Large Scale Experiments \Longrightarrow Grid5000
- Pilot Applications => parXXL

- Simulation ⇒ SimGrid
- Emulation => Wrekavoc
- Large Scale Experiments \Longrightarrow Grid5000
- Pilot Applications => parXXL

Context: Irregular Applications on a Large Scale

graphs networks web graph, internet, social networks cellular networks neural networks, cristals

Large problems, some millions or billions of nodes. Complex neighborhood structure and local functionality

日本・モン・モン・

RINRIA AlGorille

LOTIA

25/30

Context: Irregular Applications on a Large Scale

graphs networks web graph, internet, social networks cellular networks neural networks, cristals

Large problems, some millions or billions of nodes. Complex neighborhood structure and local functionality

□ ▶ < ⊡ ▶ < ⊒ ▶ < ⊒ ▶ **RINRIA** AlGor<u>ille</u>

LOTIA

Context: Irregular Applications on a Large Scale

graphs networks web graph, internet, social networks cellular networks neural networks, cristals

Large problems, some millions or billions of nodes. Complex neighborhood structure and local functionality

Jens Gustedt (INRIA)

RINRIA AlGorille

LOTIA

25/30

Context: Irregular Applications on a Large Scale

graphs networks web graph, internet, social networks cellular networks neural networks, cristals

Large problems, some millions or billions of nodes. Complex neighborhood structure and local functionality

Jens Gustedt (INRIA)

LOTIA

25/30

Context: Irregular Applications on a Large Scale

graphs networks web graph, internet, social networks cellular networks neural networks, cristals

Large problems, some millions or billions of nodes. Complex neighborhood structure and local functionality

Jens Gustedt (INRIA)

LOTIA

25/30

Context: Irregular Applications on a Large Scale

graphs networks web graph, internet, social networks cellular networks neural networks, cristals

Large problems, some millions or billions of nodes. Complex neighborhood structure and local functionality

Loria

25/30

Context: Irregular Applications on a Large Scale

graphs networks web graph, internet, social networks cellular networks neural networks, cristals

Large problems, some millions or billions of nodes. Complex neighborhood structure and local functionality

RINRIA AlGorille

LOTIA

25/30

Outline

	The Team and the Scientific Community
	Three Challengesalgorithmicconceptualmethodological
	 Three Research Themes Structuring applications for scalability Transparent resource management Experimental validation
5	Software

イロト イロト イヨト イヨト

RINRIA AlGorille

2

LOTIS

parXXL Algorithmic toolbox and testbed for fine grained computation on coarse grained architectures.

AdOC Communication compression on the fly.

SimGrid/GRAS Grid-simulator (SimGrid) and toolbox (GRAS) for service development, simulation, evaluation and deployment.

Wrekavoc Emulation of heterogeneity.

RINRIA AlGorille

parXXL Algorithmic toolbox and testbed for fine grained computation on coarse grained architectures.

AdOC Communication compression on the fly.

SimGrid/GRAS Grid-simulator (SimGrid) and toolbox (GRAS) for service development, simulation, evaluation and deployment.

Wrekavoc Emulation of heterogeneity.

RINRIA AlGorille

parXXL Algorithmic toolbox and testbed for fine grained computation on coarse grained architectures. AdOC Communication compression on the fly. SimGrid/GRAS Grid-simulator (SimGrid) and toolbox (GRAS) for service development, simulation, evaluation and deployment.

Wrekavoc Emulation of heterogeneity.

RINRIA AlGorille

parXXL Algorithmic toolbox and testbed for fine grained computation on coarse grained architectures. AdOC Communication compression on the fly. SimGrid/GRAS Grid-simulator (SimGrid) and toolbox (GRAS) for service development, simulation, evaluation and deployment.

Wrekavoc Emulation of heterogeneity.

RINRIA AlGorille

Why: On simulator, one develops a prototype, not an application

What: Grid Research & Development Framework

- Study on simulator, produce real-world programs seamlessly
- Two implementations of the same interface
- Running to Linux, Mac OSX, Solaris, AIX, IRIX (Windows?)
- Communication speed almost comparable to MPICH
- Allow heterogeneous communications

RINRIA AlGorille

Loria

28/30

Why: On simulator, one develops a prototype, not an application

What: Grid Research & Development Framework

- Study on simulator, produce real-world programs seamlessly
- Two implementations of the same interface
- Running to Linux, Mac OSX, Solaris, AIX, IRIX (Windows?)
- Communication speed almost comparable to MPICH
- Allow heterogeneous communications

イロト イポト イヨト イヨト

AlGorille

Loria

28/30

RINRIA

Why: On simulator, one develops a prototype, not an application

What: Grid Research & Development Framework

- Study on simulator, produce real-world programs seamlessly
- Two implementations of the same interface
- Running to Linux, Mac OSX, Solaris, AIX, IRIX (Windows?)
- Communication speed almost comparable to MPICH
- Allow heterogeneous communications

RINRIA

AlGorille

LOTIA

28/30

Why: On simulator, one develops a prototype, not an application

What: Grid Research & Development Framework

- Study on simulator, produce real-world programs seamlessly
- Two implementations of the same interface
- Running to Linux, Mac OSX, Solaris, AIX, IRIX (Windows?)
- Communication speed almost comparable to MPICH
- Allow heterogeneous communications

イロト イロト イヨト イヨト

AlGorille

LOTIA

28/30

RINRIA

Why: On simulator, one develops a prototype, not an application

What: Grid Research & Development Framework

- Study on simulator, produce real-world programs seamlessly
- Two implementations of the same interface
- Running to Linux, Mac OSX, Solaris, AIX, IRIX (Windows?)
- Communication speed almost comparable to MPICH
- Allow heterogeneous communications

イロト イロト イヨト イヨト

AlGorille

LOTIA

28/30

RINRIA

Outline

	The Team and the Scientific Community
	Three Challengesalgorithmicconceptualmethodological
	 Three Research Themes Structuring applications for scalability Transparent resource management Experimental validation
6	Conclusion

イロン イロン イヨン イヨン

RINRIA AlGorille

2

LOTIS

Conclusion

AlGorille

Algorithms for the Grid

Layer model of a grid architecture

Experimental validation

applications	
middleware	
services	
infrastructure	

Structuring applications for scalability Transparent resource management

ヘロン 人間 とくほど 人間と

RINRIA AlGorille

э

A lot of Software

parXXL AdOc SimGrid Wrekavoc

Jens (Gustedt ((INRIA)
--------	-----------	---------

Conclusion

AlGorille

Algorithms for the Grid

Layer model of a grid architecture

Experi- 🏠	applications	$ \Leftarrow$
mental	middleware	1
valida-	services	$ \Leftarrow$
tion ↓	infrastructure	1

Structuring applications for scalability Transparent resource management

★ E ► ★ E ►

LOTIA

RINRIA AlGorille

A lot of Software

parXXL AdOc SimGrid Wrekavoc

Jens Gu	stedt	(INRIA)
---------	-------	---------

Conclusion

AlGorille

Algorithms for the Grid

Layer model of a grid architecture

Experi- ↑	applications
mental	middleware
valida-	services
tion ↓	infrastructure

 Structuring applications for scalability
 Transparent resource

(3)

RINRIA AlGorille

LOTIA

management

A lot of Software

parXXL AdOc SimGrid Wrekavoc

Jens Gustedt (INRI
